电脑桌面
添加考大网到电脑桌面
安装后可以在桌面快捷访问

2010年高考数学试卷(文)(大纲版Ⅰ,全国Ⅰ卷)(解析卷).docVIP免费

2010年高考数学试卷(文)(大纲版Ⅰ,全国Ⅰ卷)(解析卷).doc_第1页
2010年高考数学试卷(文)(大纲版Ⅰ,全国Ⅰ卷)(解析卷).doc_第2页
2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣C.D.【考点】GO:运用诱导公式化简求值.菁优网版权所有【专题】11:计算题.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解: .故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁UM)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【考点】1H:交、并、补集的混合运算.菁优网版权所有【分析】根据补集意义先求CUM,再根据交集的意义求N∩(CUM).【解答】解:(CUM)={2,3,5},N={1,3,5},则N∩(CUM)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.第1页|共19页3.(5分)若变量x,y满足约束条件,则z=x2y﹣的最大值为()A.4B.3C.2D.1【考点】7C:简单线性规划.菁优网版权所有【专题】11:计算题;31:数形结合.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x2y﹣表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x2y﹣⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为zmax=12﹣×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【考点】87:等比数列的性质.菁优网版权所有第2页|共19页【分析】由数列{an}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(1x﹣)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【考点】DA:二项式定理.菁优网版权所有【分析】列举(1x﹣)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=12﹣;②=6;x2的系数是﹣12+6=6﹣故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)直三棱柱ABCA﹣1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()第3页|共19页A.30°B.45°C.60°D.90°【考点】LM:异面直线及其所成的角.菁优网版权所有【专题】1:常规题型.【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABCA﹣1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【考点】34:函数的值域;3A:函数的图象与图象的变换;4O:对数函数的单调性与特殊点.菁优网版权所有【专题】11:计算题.【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=lgb﹣,再化简整理即可求解;或采用线性规划问题处理也可以.第4页|共19页【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=lgb﹣,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4a...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

阅读排行

确认删除?
QQ
  • QQ点击这里给我发消息
回到顶部