2009年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)sin585°的值为()A.B.C.D.2.(5分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个3.(5分)不等式<1的解集为()A.{x|0<x<1}∪{x|x>1}B.{x|0<x<1}C.{x|1﹣<x<0}D.{x|x<0}4.(5分)已知tana=4,cotβ=,则tan(a+β)=()A.B.﹣C.D.﹣5.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为()A.B.2C.D.6.(5分)已知函数f(x)的反函数为g(x)=1+2lgx(x>0),则f(1)+g(1)=()A.0B.1C.2D.47.(5分)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种B.180种C.300种D.345种8.(5分)设非零向量、、满足,则=()A.150°B.120°C.60°D.30°第1页|共5页9.(5分)已知三棱柱ABCA﹣1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影D为BC的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.10.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.11.(5分)已知二面角αlβ﹣﹣为60°,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为()A.1B.2C.D.412.(5分)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()A.B.2C.D.3二、填空题(共4小题,每小题5分,满分20分)第2页|共5页13.(5分)(xy﹣)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5分)设等差数列{an}的前n的和为Sn,若S9=72,则a2+a4+a9=.15.(5分)已知OA为球O的半径,过OA的中点M且垂直于OA的平面截球面得到圆M.若圆M的面积为3π,则球O的表面积等于.16.(5分)若直线m被两平行线l1:xy﹣+1=0与l2:xy﹣+3=0所截得的线段的长为,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是(写出所有正确答案的序号)三、解答题(共6小题,满分70分)17.(10分)设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3S﹣3=12,求{an},{bn}的通项公式.18.(12分)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.第3页|共5页19.(12分)如图,四棱锥SABCD﹣中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°(I)证明:M是侧棱SC的中点;(Ⅱ)求二面角SAMB﹣﹣的大小.20.(12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(Ⅰ)求再赛2局结束这次比赛的概率;(Ⅱ)求甲获得这次比赛胜利的概率.第4页|共5页21.(12分)已知函数f(x)=x43x﹣2+6.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设点P在曲线y=f(x)上,若该曲线在点P处的切线l通过坐标原点,求l的方程.22.(12分)如图,已知抛物线E:y2=x与圆M:(x4﹣)2+y2=r2(r>0)相交于A、B、C、D四个点.(Ⅰ)求r的取值范围;(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.第5页|共5页