1994年新疆高考文科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题(本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的)奎屯王新敞新疆(1)设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则=()(A){0}(B){0,1}(C){0,1,4}(D){0,1,2,3,4}(2)如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()(A)(0,+∞)(B)(0,2)(C)(1,+∞)(D)(0,1)(3)点(0,5)到直线y=2x的距离是()(A)(B)(C)(D)(4)设θ是第二象限的角,则必有()(A)(B)(C)(D)(5)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()(A)511个(B)512个(C)1023个(D)1024个(6)在下列函数中,以为周期的函数是()(A)y=sin2x+cos4x(B)y=sin2xcos4x(C)y=sin2x+cos2x(D)y=sin2xcos2x(7)已知正六棱台的上,下底面边长分别为2和4,高为2,则其体积为()(A)32(B)28(C)24(D)20第1页|共8页(8)设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90º,则△F1PF2的面积是()(A)1(B)(C)2(D)(9)如果复数Z满足|Z+i|+|Z-i|=2,那么|Z+i+1|最小值是()(A)1(B)(C)2(D)(10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有()(A)1260种(B)2025种(C)2520种(D)5040种(11)对于直线m、n和平面α、β,α⊥β的一个充分条件是()(A)m⊥n,m∥α,n∥β(B)m⊥n,α∩β=m,nα(C)m∥n,n⊥β,mα(D)m∥n,m⊥α,n⊥β(12)设函数f(x)=1-(-1≤x≤0),则函数y=f-1(x)的图像是()(13)已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是()(A)(B)(C)4π(D)(14)如果函数y=sin2x+acos2x的图像关于直线=-对称,那么a=()(A)(B)(C)1(D)-1(15)定义在(-∞,+∞)上的任意函数f(x)都可表示成一个奇函数g(x)和一个偶函数h(x)之和.如果f(x)=lg(10x+1),x∈(-∞,+∞),那么()(A)g(x)=x,h(x)=lg(10x+10x+2)(B)g(x)=[lg(10x+1)+x]h(x)=[lg(10x+1)-x]第2页|共8页(C)g(x)=,h(x)=lg(10x+1)-(D)g(x)=-,h(x)=lg(10x+1)+第Ⅱ卷(非选择题共85分)二、填空题(本大题共5小题,共6个空格:每空格4分,共24分.把答案填在题中横线上)(16)在(3-x)7的展开式中,x5的系数是______________(用数字作答)奎屯王新敞新疆(17)抛物线y2=8-4x的准线方程是___________,圆心在该抛物线的顶点且与其准线相切的圆的方程是__________奎屯王新敞新疆(18)已知sinθ+cosθ=,θ∈(0,π),则ctgθ的值是________________奎屯王新敞新疆(19)设圆锥底面圆周上两点A、B间的距离为2,圆锥项点到直线AB的距离为,AB和圆锥的轴的距离为1,则该圆锥的体积为____________奎屯王新敞新疆(20)在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…,an,共n个数据.我们规定所测量的“量佳近似值”a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,an推出的a=__________奎屯王新敞新疆三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)(21)(本小题满分11分)求函数的最小值.(22)(本小题满分12分)以知函数f(x)=logax(a>0且a≠1,x∈R+),若x1,x2∈R+,判断与的大小,并加以证明.(23)(本小题满分12分)第3页|共8页如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,BC=2,求线段AB1在侧面B1BCC1上的射影长.(24)(本小题满分12分)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.(25)(本小题满分14分)设数列{an}的前n项和为Sn,若对于所有的自然数n,都有,证明{an}是等差数列.参考答案一、选择题(本题考查基本知识和基本运算)1.C2.D3.B4.A5.B6.D7.B8.A9.A10.C11.C12.B13.D14.D15.C二、填空题(本题考查基本知识和基本运算.每空格4分,共24分)16.-18...