2006年山西高考文科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量、满足||=1,||=4,且•=2,则与夹角为()A.B.C.D.2.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅B.M∩N=MC.M∪N=MD.M∪N=R3.(5分)已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2ex(x∈R)D.f(2x)=lnx+ln2(x>0)4.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4C.4D.5.(5分)设Sn是等差数列{an}的前n项和,若S7=35,则a4=()A.8B.7C.6D.56.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.7.(5分)从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.08.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.9.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π第1页|共16页10.(5分)在的展开式中,x4的系数为()A.﹣120B.120C.﹣15D.1511.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.312.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知函数f(x)=a﹣,若f(x)为奇函数,则a=.14.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.15.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.16.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).三、解答题(共6小题,满分74分)17.(12分)已知{an}为等比数列,,求{an}的通项公式.18.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.19.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服第2页|共16页用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.20.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.21.(12分)设P是椭圆=1(a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.22.(14分)设a为实数,函数f(x)=x3﹣ax2+(a2﹣1)x在(﹣∞,0)和(1,+∞)都是增函数,求a的取值范围.2006年山西高考文科数学真题参考答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)已知向量、满足||=1,||=4,且•=2,则与夹角为()A.B.C.D.【分析】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,用数量积列出等式,变化出夹角的余弦表示式,代入给出的数值,求出余弦值,注意向量夹角的范围求出适合的角.【解答】解: 向量a、b满足,且,第3页|共16页设与的夹角为θ,则cosθ==, θ∈【0π】,∴θ=,故选C.2.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅B.M∩N=MC.M∪N=MD.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.3.(5分)(2006•全国卷Ⅰ)已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2...