0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第3页|共14页2000年普通高等学校招生全国统一考试数学(文史类)第II卷(非选择题共90分)注意事项:1.第II卷共6页,用钢笔或圆珠笔直接答在试题卷中。2.答卷前将密封线内的项目填写清楚。题号二三总分171819202122分数二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、第三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)(14)椭圆的焦点为,点P为其上的动点。当为钝角时,点P横坐标的取值范围是__________________。(15)设是首项为1的正项数列,且(n=1,2,3…),则它的通项公式是=_________。(16)如图,E、F分别为正方体的面、面的中心,则四边形在该正方体的面上的射影可能是__________________。第4页|共14页(要求:把可能的图的序号填上)三、解答题:本大题共16小题,共74分,解答应写出文字说明,证明过程或演算步骤。17(本小题满分12分)已知函数(I)当函数y取得最大值时,求自变量x的集合;(II)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?(18)(本小题满分12分)设为等差数列,为数列的前n项和,已知,为数列的前n项和,求。(19)(本小题满分12分)如图,已知平行六面体的底面ABCD是菱形,且(I)证明:;(II)当的值为多少时,能使?请给出证明。(20)(本小题满分...
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容