第1页|共12页13.甲、乙两人同时同地出发骑自行车做直线运动,前1小时内的位移-时间图像如图3所示,下列表述正确的是A.0.2~0.5小时内,甲的加速度比乙的大B.0.2~0.5小时内,甲的速度比乙的大C.0.6~0.8小时内,甲的位移比乙的小D.0.8小时内,甲、乙骑车的路程相等[来源:Z+xx+k.Com]【答案】B【考点定位】对s-t图象、位移、路程的理解。学科网【名师点睛】遇到图象问题,首先必须弄清纵、横轴所代表的物理量,即理解图象的物理意义,其次要紧扣图象的点、线、面、斜率、截距等。求解图象问题要注意:“一轴”、“二点”、“三线”、“四面”,并围绕这些逐一分析。运动图象只能描述直线运动,在s-t图象中,图线的斜率表示了物体运动的速度,v-t图象中,图线的斜率则表示了物体运动的加速度,要注意区分。14.如图4所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物第2页|共12页A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v【答案】D【考点定位】对参考系的理解、矢量运算法则——平行四边形定则的应用。【名师点睛】能够熟练画出相应矢量加减法的矢量三角形(或平行四边形)是关键,平时要注意这方面的训练。此题也可假设经过时间t,画出两者的二维坐标位置示意图,求出相对位移,再除以时间t即可。伽利略变换公式为:甲对乙v=甲对地v-乙对地v,甲对乙a=甲对地a-乙对地a,甲对乙s=甲对地s-乙对地s,利用上述关系,可快速求解相对运动问题。15.图5为气流加热装置的示意图,使用电阻丝加热导气管,视变压器为理想变压器,原线圈接入电压有效值恒定的交流电并保持匝数不变,调节触头P,使输出电压有效值由220V降至110V,调节前后[来源:学|科|网]第3页|共12页A.副线圈中的电流比为1∶2B.副线圈输出功率比为2∶1C.副线圈的接入匝数比为2∶1D.原线圈输入功率比为1∶2【答案】C【考点定位】理想变压器原副线圈两端电压与匝数关系、部分电路欧姆定律、电功率计算式、能量守恒定律的应用。理想变压器中原副线圈两端电压、电流、功率与匝数关系是常考问题,应熟记。理清理想变压器中各参量间的因果关系,究竟是谁决定谁是正确解决此类问题的关键和突破口。原线圈中电流为I1,匝数为n1,两端输入电压为U1,输入功率为P1,幅线圈中电流为I2,匝数为n2,两端输出电压为U2,输出功率为P2,有:21UU=21nn,21II=12nn,P1=P2。16.在同一匀强磁场中,α粒子(He42)和质子(H21)做匀速圆周运动,若它们的动量大小相等,则α粒子和质子A.运动半径之比是2∶1B.运动周期之比是2∶1C.运动速度大小之比是4∶1D.受到的洛伦兹力之比是2∶1【答案】B[来源:学科网]【考点定位】带电粒子在匀强磁场中的运动。【名师点睛】(1)熟记带电粒子在匀强磁场中做匀速圆周运动的轨道半径、周期公式,可迅速求解此类选择题。(2)qvB=rvm2和T=vrπ2,是求解带电粒子在匀强磁场中做匀速圆周运动问题的法宝。(3)带电粒第4页|共12页子在匀强磁场中做匀速圆周运动的轨道半径与粒子的速率成正比,与粒子的比荷成反比,而周期与速率无关,与粒子的比荷成反比。17.图6为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水,在水加热升温的过程中,被封闭的空气A.内能增大B.压强增大C.分子间引力和斥力都减小D.所有分子运动速率都增大【答案】AB【考点定位】对分子动理论、查理定律的理解与应用。学科网【名师点睛】(1)熟记分子动理论、气体实验定律(或理想气体状态方程)、热力学定律,对求解此类问题帮助很大,甚至可以直接判断。(2)正确分析封闭气体的变量和不变量,以及变量变化的原因,并由此变化带来的相应影响,是求解本题的关键。(3)温度是分子平均动能的标志,理想气体不计分子势能,因此内能仅仅由温度决定;分子间引力与斥力同时存在,且均随分子间距离的增大而减小,只是斥力变化较快。18.科学家使用核反应获取氚,再利用氘和氚核反应获得能量,核反应方程分别为:X+Y→He42+H31+4.9M...