青海省2024年初中学业水平考试数学(本试卷满分120分,考试时间120分钟)注意事项:1.本试卷为试题卷,请将答案写在答题卡上,否则无效.2.答卷前请将密封线内的项目填写清楚.一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合要求).1.的相反数是()A.2024B.C.D.【答案】A【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数的相反数是2024,故选:A.2.生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是()A.B.C.D.【答案】D【解析】【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D.3.如图,一个弯曲管道,,则的度数是()A.B.C.D.【答案】C【解析】【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】故选:C4.计算的结果是()A.8xB.C.D.【答案】B【解析】【分析】此题考查了合并同类项.根据合并同类项法则计算即可.【详解】解:,故选:B.5.如图,一次函数的图象与x轴相交于点A,则点A关于y轴的对称点是()A.B.C.D.【答案】A【解析】【分析】本题考查了一次函数与坐标轴的交点坐标,点的对称,属于简单题,求交点坐标是解题关键.先求出点的坐标,再根据对称性求出对称点的坐标即可.【详解】解:令,则,解得:,即点为,则点A关于y轴的对称点是.故选:A.6.如图,平分,点P在上,,,则点P到的距离是()A.4B.3C.2D.1【答案】C【解析】【分析】本题考查了角平分线的性质定理.过点P作于点E,根据角平分线的性质可得,即可求解.【详解】解:过点P作于点E, 平分,,,∴,故选:C.7.如图,在中,D是的中点,,,则的长是()A.3B.6C.D.【答案】A【解析】【分析】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定和性质.根据直角三角形斜边上的中线等于斜边的一半结合等边三角形的判定得到等边三角形,据此求解即可.【详解】解: 在中,,D是的中点,∴, ,∴等边三角形,∴.故选:A.8.化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为C.絮凝剂的体积每增加,净水率的增加量相等D.加入絮凝剂的体积是时,净水率达到【答案】D【解析】【分析】本题考查从图像上获取信息,熟练掌握能从图像上获得信息是解题的关键,根据图像信息对选项进行判断即可【详解】A、从图像上可以看到,加入絮凝剂的体积在达到最大净水率,之后净水率开始降低,不符合题意,选项错误;B、未加入絮凝剂时,净水率为,故不符合题意,选项错误;C、当絮凝剂的体积为时,净水率增加量为,絮凝剂的体积为时,净水率增加量为;故絮凝剂的体积每增加,净水率的增加量不相等,不符合题意,选项错误;D、根据图像可得,加入絮凝剂的体积是时,净水率达到,符合题意,选项正确;故选:D二、填空题(本大题共8小题,每小题3分,共24分).9.的立方根是__________.【答案】-2【解析】【分析】根据立方根的定义进行求解即可得.【详解】解: (﹣2)3=8﹣,∴﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.10.若式子有意义,则实数x的取值范围是________.【答案】【解析】【分析】本题主要考查了分式有意义的条件,分式有意义的条件是分母不等于零.根据分式有意义的条件列不等式解答即可.【详解】解: 式子有意义∴,解得:.故答案为:.11.请你写出一个解集为的一元一次不等式________.【答案】(答案不唯一)【解析】【分析】本题考查了不等式的解集.根据不等式的性质对不等式进行变形,得到的不等式就满足条件.【详解】解:解集是的不等式:.故答案...