扬州市2023年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答,非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效.4.如有作图需要,请用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.的绝对值是()A.3B.C.D.2.若,则括号内应填的单项式是()A.aB.C.D.3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图4.下列图形中是棱锥的侧面展开图的是()A.B.C.D.5.已知,则a、b、c的大小关系是()A.B.C.D.6.函数的大致图像是()A.B.C.D.7.在中,,,若是锐角三角形,则满足条件的长可以是()A.1B.2C.6D.88.已知二次函数(a为常数,且),下列结论:①函数图像一定经过第一、二、四象限;②函数图像一定不经过第三象限;③当时,y随x的增大而减小;④当时,y随x的增大而增大.其中所有正确结论的序号是()A.①②B.②③C.②D.③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.扬州市大力推进城市绿化发展,2022年新增城市绿地面积约2345000平方米,数据2345000用科学记数法表示为________.10.分解因式:__________.11.如果一个多边形每一个外角都是,那么这个多边形的边数为________.12.某种绿豆在相同条件下发芽试验的结果如下:每批粒数n2510501005001000150020003000发芽的频数m2494492463928139618662794发芽的频率(精确到0.001)1.0000.8000.9000.8800.9200.9260.9280.9310.9330.931这种绿豆发芽的概率的估计值为________(精确到0.01).13.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.14.用半径为,面积为的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为________.15.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,且当时,.当气球内的气体压强大于时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于________.16.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、b,斜边长为c,若,则每个直角三角形的面积为________.17.如图,中,,以点B为圆心,适当长为半径画弧,分别交于点M、N,再分别以点M、N为圆心,大于的长为半径画弧,两弧交于点E,作射线交于点D,则线段的长为________.18.如图,已知正方形的边长为1,点E、F分别在边上,将正方形沿着翻折,点B恰好落在边上的点处,如果四边形与四边形的面积比为3∶5,那么线段的长为________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(1);(2).20.解不等式组并把它的解集在数轴上表示出来.21.某校为了普及环保知识,从七、八两个年级中各选出10名学生参加环保知识竞赛(满分100分),并对成绩进行整理分析,得到如下信息:平均数众数中位数七年级参赛学生成绩85.5m87八年级参赛学生成绩85.585n根据以上信息,回答下列问题:(1)填空:________,________;(2)七、八年级参赛学生成绩的方差分别记为、,请判断___________(填“”“”或“”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.22.扬州是个好地方,有着丰富...