2022年湖北省黄冈市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1.﹣5的绝对值是()A.5B.﹣5C.D.2.某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱3.北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城,将数据21000用科学记数法表示为()A.21×103B.2.1×104C.2.1×105D.0.21×1064.下列图形中,对称轴最多的是()A.等边三角形B.矩形C.正方形D.圆5.下列计算正确的是()A.a2•a4=a8B.(-2a2)3=-6a6C.a4÷a=a3D.2a+3a=5a26.下列调查中,适宜采用全面调查方式的是()A.检测“神舟十四号”载人飞船零件的质量B.检测一批LED灯的使用寿命C.检测黄冈、孝感、咸宁三市的空气质量D.检测一批家用汽车的抗撞击能力7.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,以点C为圆心,CA的长为半径画弧,交AB于点D,则弧AD的长为()A.B.C.D.28.如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4B.3C.2D.1二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9.若分式有意义,则x的取值范围是________.10.如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3=________度.11.已知一元二次方程x2﹣4x+3=0的两根为x1、x2,则x1•x2=_____.12.如图,已知,,请你添加一个条件________,使.13.小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是________.14.如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离.已知乙建筑物的高度为,则甲建筑物的高度为________.(,,,结果保留整数).15.勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).16.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17.先化简,再求值:4xy-2xy-(-3xy),其中x=2,y=-1.18.某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?19.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.20.如图,已知一次函数y1=kx+b的图像与函数y2=(x>0)的图像交于A(6,-),B(,n)两点,与y轴交于点C,将直线AB沿...