黄石市2022年初中毕业生学业水平考试一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的绝对值是()A.B.C.D.【答案】B【解析】【分析】根据绝对值的意义求解即可.【详解】解: >1,∴||=,故选:B.【点睛】本题考查绝对值,估算无理数,熟练掌握一个正数的绝对值是它的本身,一个负数的绝对值是它的相反相数,0的绝对值中0是解题的关键.2.下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是()A.温州博物馆B.西藏博物馆C.广东博物馆D.湖北博物馆【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义解答即可.【详解】解:A:既是中心对称图形,又是轴对称图形,故此选项符合题意;B:不是中心对称图形,是轴对称图形,故此选项不合题意;C:不是中心对称图形,也不是轴对称图形,故此选项不合题意;D:不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点睛】本题主要考查中心对称图形和轴对称图形的概念,轴对称图形:在同一平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形和原图完全重合,那么这个图形就叫做中心图形.3.由5个大小相同的小正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的或看不到的棱都应表现在主视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形,故选:B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.下列运算正确的是()A.B.C.D.【答案】D【解析】【分析】根据合并同类项法则,同底数幂的乘处法法则以及积的乘方运算法则即可求出答案.【详解】解:A.与不是同类项,所以不能合并,故A不符合题意B.原式=,故B不符合题意C.原式=,故C不符合题意D.原式=,故D符合题意.故选:D.【点睛】本题考查合并同类项法则,同底数幂的乘处法法则以及积的乘方运算法则,本题属于基础题型.5.函数的自变量x的取值范围是()A.且B.且C.D.且【答案】B【解析】【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,∴且故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.6.我市某校开展共创文明班,一起向未来的古诗文朗诵比赛活动,有10位同学参加了初赛,按初赛成绩由高到低取前5位进入决赛.如果小王同学知道了自己的成绩后,要判断能否进入决赛,他需要知道这10位同学成绩的()A.平均数B.众数C.中位数D.方差【答案】C【解析】【分析】共有10名同学参加比赛,取前5名进入决赛,而成绩的中位数应为第5,第6名同学的成绩的平均数,如果小王的成绩大于中位数,则在前5名,由此即可判断.【详解】解: 一共有10名同学参加比赛,取前5名进入决赛,∴成绩的中位数应为第5,第6名同学的成绩的平均数,如果小王的成绩大于中位数,则可以晋级,反之则不能晋级,故只需要知道10名同学成绩的中位数即可,故选:C.【点睛】本题考查求一组数的中位数,中位数的实际应用,能够求出一组数据的中位数是解决本题的关键.7.如图,正方形的边长为,将正方形绕原点O顺时针旋转45°,则点B的对应点的坐标为()A.B.C.D.【答案】D【解析】【分析】连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出,得到△为等腰直角三角形,点在y轴上,利用勾股定理求出O即可.【详解】解:连接OB, 正方形ABCD绕原点O顺时针旋转45°,∴,,∴,∴△为等腰直角三角形,点在y轴上, ,∴=2,∴(0,2),故选:D.【点睛】本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.8.如图,在中,分别以A,C为圆心,大于长为半径作弧,两弧分别相交于M,N两点,作直线,分别交线段,于点D,E,若,的周长为11,则的周长为()A.13B.14C.15D.16【答案】C【解析】【...