2021年兰州市初中学业水平考试数学(A)一、选择题:本大题12小题,每小题3分,共36分.每小题只有一个正确选项.1.若,则的余角为()A.30°B.40°C.50°D.140°【答案】C【解析】【分析】根据余角的定义,90°减去即可求得的余角.【详解】,的余角为.故选C.【点睛】本题考查了求一个角的余角,理解余角的定义是解题的关键.若两角之和为90°,则称这两个角“互为余角”,简称“互余”.2.如图,该几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置几何体判断出主视图图形即可.【详解】从正面看所得到的图形为故选【点睛】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.3.计算:()A.B.C.D.【答案】D【解析】【分析】根据单项式乘以多项式运算法则计算即可.【详解】解:,故选:D.【点睛】本题考查了单项式乘以多项式,熟练运用运算法则是解本题的关键.4.关于的一元一次不等式的解集在数轴上表示为()A.B.C.D.【答案】B【解析】【分析】求出不等式的解集,并表示出数轴上即可.【详解】解得将表示在数轴上,如图故选B【点睛】本题考查了解一元一次不等式,并将不等式的解集表示在数轴上,数形结合是解题的关键.5.因式分解:()A.B.C.D.【答案】C【解析】【分析】先提公因式,进而根据平方差公式因式分解即可.【详解】故选C.【点睛】本题考查了综合运用提公因式和公式法因式分解,掌握因式分解的方法是解题的关键.6.在平面直角坐标系中,点关于轴对称的点的坐标是()A.B.C.D.【答案】D【解析】【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:点A(-3,4)关于y轴对称的点的坐标是(3,4),故选:D.【点睛】本题考查了关于y轴对称的点的坐标,明确关于y轴对称的点的横坐标互为相反数,纵坐标相等是解题的关键7.二次函数的图象的对称轴是()A.B.C.D.【答案】A【解析】【分析】将二次函数写成顶点式,进而可得对称轴.【详解】解:.二次函数的图象的对称轴是.故选A.【点睛】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.8.如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为()A.B.C.D.【答案】B【解析】【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面只有一个面涂有颜色,有6种结果,根据几何概率及其概率的计算公式,即可求解.【详解】解:解:由题意,在一个棱长为3cm的正方体的表面涂上颜色,将其分割成27个棱长为1cm的小正方体,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面有一个面都涂色,有6种结果,所以所求概率为.故选:B.【点睛】本题考查几何概率的计算,涉及正方体的几何结构,属于基础题.9.如图,点在反比例函数图象上,轴于点,是的中点,连接,,若的面积为2,则()A.4B.8C.12D.16【答案】B【解析】【分析】根据三角形中线的性质得出,然后根据反比例函数的几何意义得解.【详解】解: 点C是OB的中点,的面积为2,∴, 轴于点,∴,∴,∴,故选:B.【点睛】本题考查了反比例函数的几何意义以及三角形中线的性质,熟知反比例函数的几何意义是解本题的关键.10.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为时,标准视力表中最大的“”字高度为,当测试距离为时,最大的“”字高度为()mmA.B.C.D.【答案】C【解析】【分析】根据题意,得、,结合相似三角形的性质,通过相似比计算,即可得到答案.【详解】根据题意,得,且∴∴∴故选:C.【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成...