2019年四川内江市中考数学试卷一、选择题(每小题3分,共36分.)1.﹣的相反数是()A.6B.﹣6C.D.﹣2.﹣268000用科学记数法表示为()A.﹣268×103B.﹣268×104C.﹣26.8×104D.﹣2.68×1053.下列几何体中,主视图为三角形的是()A.B.C.D.4.下列事件为必然事件的是()A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B.三角形的内角和为180°C.打开电视机,任选一个频道,屏幕上正在播放广告D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列运算正确的是()A.m2•m3=m6B.(m4)2=m6C.m3+m3=2m3D.(m﹣n)2=m2﹣n27.在函数y=+中,自变量x的取值范围是()A.x<4B.x≥4且x≠﹣3C.x>4D.x≤4且x≠﹣38.如图,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为()A.6B.7C.8D.99.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是()A.16B.12C.14D.12或1610.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.611.若关于x的代等式组恰有三个整数解,则a的取值范围是()A.1≤a<B.1<a≤C.1<a<D.a≤1或a>12.如图,将△ABC沿着过BC的中点D的直线折叠,使点B落在AC边上的B1处,称为第一次操作,折痕DE到AC的距离为h1;还原纸片后,再将△BDE沿着过BD的中点D1的直线折叠,使点B落在DE边上的B2处,称为第二次操作,折痕D1E1到AC的距离记为h2;按上述方法不断操作下去……经过第n次操作后得到折痕Dn﹣1En﹣1,到AC的距离记为hn.若h1=1,则hn的值为()A.1+B.1+C.2﹣D.2﹣二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)分解因式:xy2﹣2xy+x=.14.(5分)一组数据为0,1,2,3,4,则这组数据的方差是.15.(5分)若+=2,则分式的值为.16.(5分)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.三、解题(本大题共5小题,共4分.解答应写出必要的文字说明或推演步骤.)17.(7分)计算:(﹣1)2019+(﹣)﹣2+|﹣2|+3tan30°.18.(9分)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.19.(9分)“大千故里,文化内江”,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了A、B、C、D4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调査”),王老师所调查的4个班共征集到作品件,并补全条形统计图;(2)在扇形统计图中,表示C班的扇形周心角的度数为;(3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)20.(9分)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC为多少米?(结果保留根号)21.(10分)如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第二、四象限内的点A(a,4)和点B(8,b).过点A作x轴的垂线,垂足为点C,△AOC的面积为4.(1)分别求出a和b的值;(2)结合图象直接写出mx+n<的解集;(3)在x轴上取点P,使PA﹣PB取得最大值时,求出点P的坐标.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)若|1001﹣a|+=a,则a﹣10012=.23.(6分)如图,点A、B、C在同一直线上,且AB=AC,点D、E分别是AB、BC的中点,分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作S1、S2、S3,若S1=,则S2+S3=.24.(6分)若x、y、z为实数,且...