2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是()A.﹣aB.a2C.|a|D.2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.4.(3分)下列运算正确的是()A.5abab=4﹣B.+=C.a6÷a2=a4D.(a2b)3=a5b35.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交6.(3分)计算,结果是()A.x2﹣B.x+2C.D.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8B.众数是9C.平均数是8D.极差是78.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2C.D.29.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1y﹣2>0D.y1y﹣2<010.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(ab﹣)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.13.(3分)代数式有意义时,x应满足的条件为.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:,该逆命题是命题(填“真”或“假”).16.(3分)若关于x的方程x2+2mx+m2+3m2=0﹣有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x2﹣≤3x,并在数轴上表示解集.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)已知多项式A=(x+2)2+(1x﹣)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.21.(12分)已知一次函数y=kx6﹣的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx2﹣(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上...